GSK3β/axin-1/β-catenin complex is involved in semaphorin3A signaling.

نویسندگان

  • Tomonobu Hida
  • Naoya Yamashita
  • Hiroshi Usui
  • Fumio Nakamura
  • Yukio Sasaki
  • Akira Kikuchi
  • Yoshio Goshima
چکیده

Semaphorin3A (Sema3A) exerts a wide variety of biological functions by regulating reorganization of actin and tubulin cytoskeletal proteins through signaling pathways including sequential phosphorylation of collapsin response mediator protein 1 (CRMP1) and CRMP2 by cyclin-dependent kinase-5 and glycogen synthase kinase-3β (GSK3β). To delineate how GSK3β mediates Sema3A signaling, we here determined the substrates of GSK3β involved. Introduction of either GSK3β mutants, GSK3β-R96A, L128A, or K85M into chick dorsal root ganglion (DRG) neurons suppressed Sema3A-induced growth cone collapse, thereby suggesting that unprimed as well as primed substrates are involved in Sema3A signaling. Axin-1, a key player in Wnt signaling, is an unprimed substrate of GSK3β. The phosphorylation of Axin-1 by GSK3β accelerates the association of Axin-1 with β-catenin. Immunocytochemical studies revealed that Sema3A induced an increase in the intensity levels of β-catenin in the DRG growth cones. Axin-1 siRNA knockdown suppressed Sema3A-induced growth cone collapse. The reintroduction of RNAi-resistant Axin-1 (rAxin-1)-wt rescued the responsiveness to Sema3A, while that of nonphosphorylated mutants, rAxin S322A/S326A/S330A and T485A/S490A/S497A, did not. Sema3A also enhanced the colocalization of GSK3β, Axin-1, and β-catenin in the growth cones. The increase of β-catenin in the growth cones was suppressed by the siRNA knockdown of Axin-1. Furthermore, either Axin-1 or β-catenin RNAi knockdown suppressed the internalization of Sema3A. These results suggest that Sema3A induces the formation of GSK3β/Axin-1/β-catenin complex, which regulates signaling cascade of Sema3A via an endocytotic mechanism. This finding should provide clue for understanding of mechanisms of a wide variety of biological functions of Sema3A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WDR26 is a new partner of Axin1 in the canonical Wnt signaling pathway

The stability of β-catenin is very important for canonical Wnt signaling. A protein complex including Axin/APC/GSK3β phosphorylates β-catenin to be degraded by ubiquitination with β-TrCP. In the recent study, we isolated WDR26, a protein that binds to Axin. Here, we found that WDR26 is a negative regulator of the canonical Wnt signaling pathway, and that WDR26 affected β-catenin levels. In addi...

متن کامل

Shared molecular mechanisms regulate multiple catenin proteins: canonical Wnt signals and components modulate p120-catenin isoform-1 and additional p120 subfamily members.

Wnt signaling pathways have fundamental roles in animal development and tumor progression. Here, employing Xenopus embryos and mammalian cell lines, we report that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability through mechanisms shared with those regulating β-catenin. For example, in common with β-catenin, exogenous expression of destruction com...

متن کامل

The Adenomatous Polyposis Coli (APC) tumor suppressor was identified as the gene mutated in specific families with a hereditary predisposition towards developing colorectal adenomatous polyps and carcinomas (Joslyn

The Adenomatous Polyposis Coli (APC) tumor suppressor was identified as the gene mutated in specific families with a hereditary predisposition towards developing colorectal adenomatous polyps and carcinomas (Joslyn et al., 1991; Kinzler et al., 1991). Truncation mutations in APC were subsequently also found in greater than 80% of sporadic colonic adenomatous polyps and carcinomas (Miyoshi et al...

متن کامل

Both ERK and Wnt / β - catenin pathways are involved in Wnt 3 a - induced proliferation

Wnt activates the cytoplasmic Disheveled (Dsh) protein leading to inhibition of glycogen synthase kinase 3β (GSK3β) (Lee et al., 1999). Inhibition of GSK3β protects β-catenin against degradation by protein complexes, consisting of GSK3β, axin and adenomatous polyposis coli (APC) In the resting state, very little β-catenin is present in either the cytoplasm or the nucleus because of rapid degrad...

متن کامل

Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β

Background: Inactivation of the adenomatous polyposis coli (APC) tumor suppressor protein is responsible for both inherited and sporadic forms of colon cancer. Growth control by APC may relate to its ability to downregulate β-catenin post-translationally. In cancer, mutations in APC ablate its ability to regulate β-catenin, and mutations in β-catenin prevent its downregulation by wild-type APC....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 35  شماره 

صفحات  -

تاریخ انتشار 2012